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Introduction

In the propagation of electromagnetic waves, in a medium with random

large-scale (in comparison with the long wave) irregularities due to the

multiple forward scattering otfect, fluctuations of the wave field rapidly

increase with distance. Beginning at a certain distance, -they are unsuit-

able foroalculation by the perturbation theory in any of its forms (range

of strong fluctuations)%. Thic effect was observed eCxpsrimentally by

Gracheva and Ourvich E23 in experiments on the propagation of light in a

turbulent atmosphere, and in further detailed research in work by Ourvich,

Kalllstratova, Time i3 , Gracheva, Gurvich, Kellistratova C43', and Mordu-

kovicih t53.
Recently, a number of books have appeared in which equations have been

obtained by different methods, and wiioh describe the strong fluctuation region

of a field [6 - 17]. The method for obtaining these equations, used in works

CIO - 171 , In based on the approximation of the wave propagation process in

a nonuniform medium by the random diffusion process. In this approximation,

'The range of fluctuations of intensity, which is describod by the first
approximation of the even perturbation3 method, is called the weak fluc-
tuations range. The basic results of theoretical and experimental research
in this range have been shown in some detail in a book by Tatarskiy CI) (see
also below Section 6 of the first chapter).
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closed equations, suitable for the strong fluctuations range, can be obtained

for all moments of a ficld and equation of the Sinetein-Fokker type can be

obtained for the characteristic function of a field.

In this work, we try to show in sequence the basic results obtained in

this direction. The work consists of two chapters.

The first chapter is devoted to a general examination of the propagation

process of a light wave in a turbulent medium. The first secticn examines

the stochastic equation, describing propagation of a wave in a random medium

and several accurate conclusions of this equation are given. The second

section examines a model in which one can disregard the longitudinal radius

of the dielectric constant correlation in comparison with all the longitudinal

scales of the problem. This supposition, equivalent to the substitution of

an actlial correlation function of the refractive index on the delta-fnotion

in a longitudinal direction, allows one to obtain closed integral equations

for all moments of the wave field. Throughout the work, apart from the

supposition above, there is also a supposition on the Gauss distribution of
probabilities for fluctuations of the refractive index. Here, one can reduce

the integral equations to differential ones and show that the characteristic

functional of a field is satisfied bý an equation of the Einstein-Fokker type,

and shows that the propagation of a wave is a diffusion process. The fourth

section uhows a method of successive approximations for solving the stochastic

equation of a wave propagation, in which the diffusion approximation shown

above is the first approximation. Investigation of the second approximation

allows one to obtain boundaries for the applicability of the diffusion approxi-

mation and show that the latter can also be used in the strong fluctuation

range of a field. In the fifth section there is an examination of an actual

example, devoted to calculating the mutual coherenco function in a turbulent

t:
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•ii~i,•,.'medium and examining the comparison of results of calculation with experi-
mental data. The final section of the first chapter investigates the ampli.

tude-phase characteristics of a light wave.

In a whole series of works describing wave propagation in a medium with

random irregularities, the equation for ray diffusion is used £18 - 21i (an

approximation of geometrical optics). The diffusion equation itself (the

Uinstein.Fokker-EEF) is normally written on the basis of intuitive considera-

tion relying on the analogy with well-known problems, leading to this equation.

The dynamic equation of the problw, (in this case .- the equation of rays) is

only used for calculating coefficients in the EEF. As was said in work [22 23)0

it is still not clear in what conditions one can justifiably use the EEF (a

number of such conditions was suggested in t231 from physical considerations).

At the same time, there must be certain conditions superimposed on functions

entering the dynamic equations, and certain limitations on parameters, on

which the solution depends, in which the EEF will be the logical result of

dynamic equations. These conditions are examined in work £24), where it was

shovm, that the SEF can only be valid in narrow angle approximation. Sta-

tistical characteristics of amplitude and phase of a light wave, as shown in

work [25) , are determined by the statistical character.stic of rays.

In the second chapter of this work, light propagation in a turbulent

medium is inveotigated in the approximation of geometrical optics. The first

section examines the problem on the diffusion of rays in random .Lrregular

media, in the second and the third sections the amplitude-phase fluctuations

of a light wave are examined,

i4
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I, General Examination

i1 Initial stoohactic equations and some of their consequences

The propagation of monochromatic light in a medium with large-scale

irregularities, when depolarization is small P63, can be quite accurately

described by the scalar wve equation

aý + Of I + -(r)],p- 0. ()•

Here 5, 3s linked with a component of the electric field E by the ratio

R ~ '-xp(-------- -- 'which is the fluctuating part

of the dielectric constant. If one disregards large angle scatter, then

instead of (1), one can use the parabolic equation for function u linked

with 0 by the ratio 0 - u oxp(ikx):
W .... u.x. + hrc'(x, p) u(.v, p) 0- , +
dXi -

a. ly , :1, , _ 2.+ T+ , ".
OY+

During the transition from (1) to (2), the ter.n d2u/dx 2  is rejected. The

initial condition for (2) is
11(o, P) ,op.( )+i

Further, we shall proceed from (2).

Equation (2) with the boundary condition (3) can be written itn the form

of an integral-differential equation

U , ( , P) I k, d., t, (6+, <, ] p 4-
L2~) (4)

+ I.,dtexp[elSd(i#)
0 P

which, in several cases, is mors suitable.

If one writes the solution of equation (4) in the form of an interative

series, one can easily be persuaded that function u(x,1 0/ will only depend

functionally in the previous values along x of £I( ,p) from the interval

I|5



0 Cx. It follows that u(x,p) does not change when varying the func.-

tion 9€4,p ) outside of this intervl, that is, in sections <0. t> , x.

Consequently, the variation derivative Ju/dr satisfies the condition

u(x,p) 0 (x' <0, '>X),
•'s(x', t') )

which we shall call the causality condition. Furthermore, a more suitable - -

value for us is where x = x'. This value can be found from

equation (2), if it is integrated in respect to x within limits (0, x),

and afterwards functioned by the operator --•,a(x', p')
o.u(x',p) *i J"'k_,.• '

21k + l + k's( )I
+!( P') • ••',(¢,•' -:O

Here we calculated that -- and the lower limit

for integrating 0 was replaced by x', since according to (5).- ......

when x'> , . Assuming that x' = x, we obtain the ratio (10)

• ux ) '• • p '-. )u(x, p). (6)
a u( X , ) k2 P )

In most cases, the value --- (x- when U..x'...x"can be expressed by the
C (x'. r')

function of the Green equation (2), linking u(x,O) and u(x',,O') when

0 < x' <X1 "u(x, p) .I'G(x, p ; .x', P '):(x', p'),

by using the ratio CIG
,•.�! _•!_(, p,2', ,'1,(x', p').W*x, F') .

The solution of equation (2) with the initial condition (3) can, by using the

methods suggested by Fradkin [27, 281, be written in operational forn or in

the form of a Feinman continual integral:

• " : .. ...• ' I . .. . .. ... .i I I . . . . . . . . . . . . .. . .. .i . . . . .. . . . .. . . . . i . . .. . . . . . . . iI ,,. ........i .. .... ..6.



I i'
u(x, p) -cxp -. l 1,1. p + d :(

U(, CP2k et (Ito0

0

-fDvexPjiý/ ' A~ [0(~ + P+ dSd v(lvuu(+d (t))

0 0

whore

Dv o dv(t){ S Idvl•,)exp i-) d.

In the first of the equalities, (7) after carrying out the function of the

operator in the exponent for the brace which follows it, one must place

0= 0, A clear presentation of the solution in form (?), in several cases

is suitable for investigation (see ý123 and t1.I)

2. Approximation for delta-correlated fluctuations of a dielectric
constant along the propagation direction

As was said above, field u(x, ,o) only functionally depends on pre-

ceding values of 1(tp). However, there can be a statistical link between

u(x.,) and subsequent values I(x',p'), since values i(x',1 ') when

x >x. are correlated with values of w(4, when x. It is obvious

Lhat the correlation of field u(x,,) with the subsequent values of 1(x',A')

is marked when x' - xt 10, where 10 -- is the longitudinal rtdius of

correlation of •. At the same time, the characteristic radius of correlation

of field u(x,,) in a longitudinal direction has a value in the order of

x.(see for example [I]). Therefore, in the problem examined, there is a

small parameter of 1,/x, which can be used for an approximate solution. One

can place 1i= 0 in the first approximation, in this case, values of fields

,U i) when < i K x w4 ll be not only functionally but also statistically
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independent of values of •(vj, •j) when )j > x, that is

,,"€"P,•,•i, K, iil '•:", PA)KL ['(, q >"" (8) ,:

By using the feature of (8), one can easily find equations for the statis..

tical moments of field u(x,, ). Let us indicate this on an example <U>.

Let us use equation (4) for this. By averaging it, we take into account that

in the second term in the right part the value C(v, ) in the exponent is

always taken when values of > , that is, statistically independent of

the second factor ,.u(•, p) . Therefore, when averaging (4), these factors

can be averaged independently,
•, ' (< " (-V -, P ) > 10(, p ) 6 X I-'-

* •(9)

The equation oIained is closed, since it does not contain other known func-

tions, a&part from <u). In a similar manner, one can obtain an equation

for the moment of the arbitrary ordert×~~ ~P) itx 0,) .,.) X'(,''

For this, one must first of all write the differential equation for u(x,#I),

_.., u*(x, m) and then convert it. into an integral-differential oquation

of type (4). After this, by usine ( ), one can carry out averaging. An

equation for Mn, n obtained in this way in [11), has the form

<' exl4 itI g(i,),Wt (10)

x. ,' " ,,

0 • I- I) -1

... . 2ni



, - 'A•' IMf,,(•, ( pf, I•,I). (10)
A,.I

where •p is•the aegregate of all a, and the value of

is designated by M0
n,m*

3. Equations for moment of a wave field in a medium with a Gauss

distribution of fluctuations of the dielectric constant.

When deriving equations (10), only the characteristics of the delta-

correlation of fluctuations of the dielectric constant along the direction

of wave propagation were used; the distribution law itself was not defined

concretely. Let us now examine a particular case of the Gauss law of dis-

tribution for T. In this easel the statistical characteristics of ' are

completely described by the correlation function
P'.x X" •.,P') .... P)ix Z)(x', P')

The delta-correlation condition is equivalent to substituting B. by an

effective correlation'

Beeff (m, p; X, P') P •(r .X1'),4(A, p, P%) ( 1

efff

here A is determined from the equality of integrals from B and Bjf in

respect to x'p
A1(r, p, P') P I .'/(• A,•)

In a case of statistical uniformity of the field I, which we shall examine

for simplicity, A = A(ý-p'), that is A does not depend on x. In the

case examined, one can easily find -he value

9
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and after calculating it reduce equation (10) to a differential equation [III
- M11 II-- [A, + A. I ,, M ' ,I' M ,., :

k3..QWp ., P., M," ., J

where Q., A(p, - pj)-.-. 2• N" J .. ..... p;)

m in •r

A4 (p- p;).ry 2 .•* -P) (13) "

In the case examined of Gauss delta-correlation fluctuations, the

aggregate of equations (12) and also their interconnecting equation for the

characteristic functional of a field u can be obtained by another method

[10D , which we shall illustrate on an equation for <u > By averaging (2),

we obtain

+p)>-.,(.v, p)ulx, >)> -: o. (14)

To find the last term, we use the formula obtained by Furutau P291 and

Novikov ~
a (r),R s > dr' (t (r) (r'), ( R['J/ (r')>, (1 5)

allowing us to calculate the correlation of the Gauss random function • (r)

(<F> a 0) with the functional R(EJ from it. Formula (15) can be proved,

for example, by expanding R [L] into a functional Taylor series,

Sinor the solution of u(x,p) of equation (2) is a functional of e,

one can write

< g (, P),c(X. P) > - [ " , dx ' d ( , , B- X' , P.X '),.:

S%.(16)
"xgs (,x, F")i/

Iy substituting instead of E3(x,A x', 1O) the effective correlation func-

tion (11), we obtain

10
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7(x, 01,(it, P)ý d pA (p p) ";(X" ')

where, by integration with respect to x, the parity of the c-function is

taken into account, as a result of which the 1/2 factor appears. By sub-

tsituting the averaged ratio (6), we obtain

(<(x, p)u(X, P)> ,-. JT A(O) <(x, p).

and equation (14) takes on the form
,•Wk T/x + A, < ux, p)) +1 A(O) a.(x, p)> 0,O "(U?_,,)4+0.(17) '

407

Equation (17) coincides with equation for M1 ,, obtained from (12).

A complete statistical description of field u(x,d) can be obtained

from the characteristic functional
11,.,•, iqt,e z ,* ex• • p I i j d p In (x, p)'-v(p)"+ 11GV 0t• . 11 P)""()]> .•

By differentiating V with respect to x, by using equation (2) and ratio
(6,an equation for x can also be obtained, It has tho forni 503 I

, , ,A (18)A

where

Equation (18), as can easily be shown [10, 151 is equivalent to the

aggregate of equations (12). Equatior (18) iJs the infinite dimensional analog

of the Einstein-Fokker equation, and in this respect the described approxi-

mation of wave propagation in a medium with lauss delta-correlation fluctuations

of If can be called diffused.

Let us write in clear form the equation for the function ,x', R, P)

(U ., ±;;P u xR - ) and for function i 1
,'( ' ,, resulting from (12), when n =m = 1 and

11



G n = = 2-

SO, i -• -•G D(,)C., D(p) .4(0) -- ((1

G.-(0, R, P) - R 'Rr I 2-p-2I

A 2 - A; A;1 ,--ý ID( - r,) + D(p - pý) +

(20)
+ )(p, - p2) + D(p- - pi l(. - , D(p- p)J 4,

•.• 0•~~~G(0, •,, p•, pf,• p<) = ,o(,•)" *'oP•) •(pI)" u zz(p')."

Equatit.n (19) was obtained by folin [61 . and Beran [311. Equation (20)

was first obtained by Sh1shov [7]. Equation (12) for moments of arbitrary

- - order, apart from works mentioned above, was also obtained by another method

in a work by Chernov (8].

As Dolin noted t63, equation (19) is equivalent to the so-called narrow

argle approximation of a radiation transfer equation. In fact, by substi-

Stut'•ng (19)

tut..ng (19)Gý(x, R. p) d- c? J (x, R, n ~~P~),

one can obtain an equation for function for J 4

a- -- , + • dn' f(v. •- .'),(X. R, ',(21)

where .d %((Y.) -- is the coefficient of extinction,

A(%) 'N IO!',(Ox) __ is the suattering indicatrix, (•, ' , -- is the

threo-dimensional spectral density of the r-orrelation function Bg(r).

Equation (19) for 02 can be solved in a general case for the arbitrary

function D(P) and arbitrary initial conditions. As for an equation for G.j,

"it cannot be solved analytically and one must resort to numerical methods.

Apart from equations for the mean values for the product of fields u(x,,1),

... , uS(x, I'm), where all the arbitrary x are identical. Equations can also

be obtained for functions<u(x1, ,EI), 80, U (Xtm,41,)> for non-concurrent

12



values of x [14j. The boundary conditions for these equations will contain

functions of Fnm for concurrent values of arbitrary arguments.

Let us also note that presenting the solution in an operational form or

in the form of a continual integral (7) when using suppositions on the Oauss

distribuUion of r and the delta.correlatio-. along an arbitrary coordinate

makis A t possible to calculate < u(x, )> and C2(x,R,,). In these caoese

it is also possible to solve equation (12). in cases when the solution of

equations (12) is not possible, formulation (7) also makes it impossible to

find a clear expression for M or however, it ia suitable for investi-

gating the asymptotio behavior of moments [16].

4.: A method of successive approximations and a condition for the

applicability of a diffused approximation

Let us nmw oxamine a more general method for obtaining equations for

moments, a particular case of which is the approximation of a diffused random

process. Let us illustrate this method b..,y an example of an equation for an

average field.

We shall reckon that the fluctuations of f have a Oauss distribution,

but the correlation function Be, (x,p, xlI. ) is not changed to B .

Lot Us average aquation (2), and to find < u u> we use tho Fuiut&u-Novikov

formula (15). As a result, we obtain the expression (16), tha substitution of

which into the equation ror <u> gives

(2/kO .!.~ <, : + kf..' j"w, V .x, p '. p').
,1 .O x A

(22)
.' •.(x, 1 ,, )

0.

Equation (22) is not closed, since At contains a now unknown function /

To obtain an equation for thio function, we shall act on equal.ion (2) by the

I 13



operator *;W', fP) when x' < x and we Lhall average. For finding

value of iE g (x.v', p) \ we again use formula (15). As a result, we
at • (X', p'

obtain " axp

(21k t4 + L3< "~P% + Al dl" d P" A(X, p, X"
• < '(23)

Equation,(23) is again ., ol'ed,. since it contains a second variational dlria.

vative from u. Av continuing this process, one can obtain an infinitely

linked chain of equations. A closed equation in approximation of a diffused

random process is obtained when converting in equation (22) function

Sf to, •• 4x, x1) A( .p,), since, in this caue, theri is a value

S i ( Xux, p)/P4(X', p')ý for oncurrent values x = xl, which according to (6)

isexpresaied throuAgh <,u)P Converting 8, to' ' can be done not i.n
1he first equation of the ohaiu (22), but in onp of the subsequent equations.

For example, if this is done in (22) , value Kwill. appear

under the symbol of the integral. It can be obtained from equation (6) (iin

which 01 is converted to p0), if one acts with tthe operator on this equality
and average

&.(X PO"P)P') /*(24)

By substituting this expression into (23), we obtain a closed equation for

Aftor this, the system of aquations (22), (23) can be solved,i. "• eqx', p')/'
and we shall find a second approximation for <u>.

A second approximation is much more accurate than an approximation of

a diffused random process. It is quite difficult to show it in general form,

but thio question can be investigated in an example permitting an accurate

solution. As an example, let us examine equation

"14



21k + k'(')u(x) 0 (,( o)

which differs from (2) by the lack of term A u, If one introduces B1(X, x')

e x- P(- IX - x'I11), , then

- t
where • - x/1, k- ,i -- is the radius of correlition W.

42
The solution of the first and second approximations respectively have

the fom 7&1x) =.exp(- Iv),,

t -- t,,

Ey comparing UJO . 21 and • when tO 1, one can easily determine that the

approximated solutions can only have a good approximation when /'4 I. Apart

from this, function 'U., as opposed to -il at zero has the same form &a in

accurate solution. Figure I shows functions of Biy ý2 and U when 0• 2 02

(ee0 - S/uO@o 01/0 , NO 0 X X - Vuo) It this case, the dlf feronce in

the second approximation from an accurate solution does not exceed 2.3%.

fl '

C,4

"0 -..... -. "." . . .--II ". ....

Figure 1
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Equations of a second approximation can be solved for <u> and C1.

A comparison of the first and second approximations makes it possible to find

conditions for the applicability of approximation of a diffused random process.

Here, it appears that the conditions for the applicability for <u > have the

form
(25) 'A

where " A(o) is the ooofficiLent of extinction, 1 is the radius

of correlation of a field . At the same time, conditions for the applica-

bility of a first approximation for O2 (xR,A) have the form

r <:2 x. I(Dx, k ) hr, (6
where T)) -- is the strictural function of a complex phaue, calculated

by the continuous perturbation method t.
It must be stressed that conditions (25) and (26) are practically in.

dependent, since they apply limitations to various parameters. In particular,

it can be shown that conditions (26) are fulfilled wtnen oondition Yl '. 1 is

violated. Let us state that conc:ition (26) sets limitations only on tho

local characteristics of fluctuations of I and therefore can also be wrLtten

for a turbulent medium.

Conditions for the applicabi.lity of a parabolic equa&tLon (2) aru Invos-

tigated in work 02J, where comparison of equations solutions (1) and (2),

written in operational form (7), were done. Here, it appeared that conditions

for the applicability of a parabolic equation were done throughout the whole

range of applicability of a diffused arflroximation.

5. Solution of an equation for the function of the mutual coherence

and some experimental data

Equation (17) for the average field can be easily solved. Its solution

has the form

16



. , NO_

SUX.(,) > -11 04t, F)expl) 2~ )
A'

where uo(x.p) . is the solution where there are no fluctuationl, A0) -4

is the ooefficient of extinction.
In a general case, one can also Solve an equation for ftnotion 020

This Solution was obtained by Bremer D21 and Dolin D31 when investigating

the equation for the transfer of radiation in narrow angular approximations

(21), equivalent to equation (19), before an equation was obtained for 02.

Later, a similar solution was investigated in works , 3A. Whereas in

(19) one oarries out Fourier conversion on variable R, which in not included

in coefficients of the equation, we obtained a linear differential equation

in partial d.rivatives of the first order, which can Ub esoiiy solved tV

the characterilstic method. The solution has the following form

Gt(v, R, ) • --kj $ dR'dp' (I(O, R R', p' p') ,

(2?)

where G2(0, RA) is the initial value of the coherency function when

x a 0. Formula (27) can also be use:l for partially coherent sour.es ,-

when V2(0, RA) do not have the form

For a partial case of a planv incident wave when (0, R,,) * const =

lu0
1 2 , the integral along R' in (27) is calculated and produces (k p/x),

after which the formula takes on the simple form oft:

G2(x, R. p) - I iiý ' 2xp - V(ý)(2 )• I . (27a)

If one examines the fluctuations of a dielectric constant, caused by turbuler.t

fluctuations of temperature, in the considerable Interval of wave numbers the

three-dimensional spectral density 40, (•f) has the form

17



w,,here A 0 .033 -- is the numerical constant, 2-- is the structural

characteristic of fluctuations of a dielectric constant, depending on meteors-

logLcal conditions [13. In this case, function D(J) is calculated and

O4aSD(p) 2v~ S A (1),()[~ 1 ex p':1 m)] -NC, p"'

where N. 36qr2 AG(7/6)/5 2 22/3(01/6) a 1.46. By substituting this expre..

sion into (27), one can calculate both as a function 02(xp, R), and as

average intensity of' a wave <I(x, R)> " 02 (x, R, 0).

f..

2(x, R.0)

Figure 2. The spaes spectrum of the coherency function of the second
order, Points -- experimental data according to [A• the
continuous curve was rlotted on the basis of formula 427)
with respect to the effect of the internal scale of turbulence,
describoed by parameter J(om [D61).

Figure 2 shows the spaes spectrum of' the coherency function obtained in

work D6]. On the same graph 13 the theoretical dependence, platted on the

basis of (27). In work (ý37 the behavior of space-limited beams in the

S18



atmosphere was experimentally studied. In Figure 3, the results of measure-

ment of average intensity are compared with a curve, plotted on the basis of

formula (27).

/d

i ,o

¶100

Figure 3

As for the equation for 04, it was not possible to solve it analytically.

An approximated solution of equation (20) (with respect to single scattering

in the sense of the theory of radiation transfer) Is shown in (13, 153 for

turbulent fluctuations of a dielectric constant.. In work by Dagkeaamanskaya

and Shishov C383 there are results of a numerical solution of this equation

for the oorrelation function of a dielectric constant in the form of a Gauss

curve. In this work they obtained saturation of intensity fluctuation, which

agreed qualitively with results described in I2 - 51.

Let us state that function 04 also describes fluctuations of the shift

of space-limited beams in random irregular media [13, 391.

6. Ampnlitude-phase fluctuations of a light wave

Let us now examine the statistical description of amplitude-phase fluc-

tuations of a light wave.
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By introducing a complex phase of wave = iS, where i ,n A/A --

i.s the amplitude level, and 8 - are the fluctuations of the phase of a wmve

relative to the phase of an incident wve (x, k), one can write the equation

for the continuous perturbation methodi

2Ik ,+ + ( ,)U + -0, it- . (28)

Accurate solutions of equations (2) and (28) are equivalent. In the first

rapproximaton of the continuous perturbaion methd in equation (28), the

term (Vj.•)' is omitted, that is, the equation examined is

2Ik.!OL + t±o+ & s x P) ~ ,( 9

In this came, the solution is a Gauss random field and the statistical pro.

perties of aiplitude functions are described by the parameter jO p(tAj, El, l E1•.

Here, the validity condition of the first approximatirin of the oontinuous per-

turbation method for amplitude function is the condition a 1. In the

range e 20 • I (which ii called the range of strong fluctuations) one must

study the full equation (28).

Let us state that the diffused approximation for equation (2) dues not

impose limitations on the amplitude fluctuations and, consequently, equations

for moments of field u(x,,o) (12) are also valid in the range of strong fluo-

tuations of amplitude,

Statistical properties of the solution (28) can also be described in

diffused approximation. However, on the strength of the nonlinearity of the

equation (28) equations for moments of function 9(x,p ) are incomplete.

By separating the imaginary part in (28), we obtain equations for the

level of amplitude -X (x, p) and wave intensity I = exp(2%),

Ve -2- + Aý,. S + 2V.yv, ,S 0', (30)
((30

Oix
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k S)0 (31)

Lxperimental study of the dis4ribution of probabilities for amplitude

level (2) showed that this distribution, both in the weak range and in the

range of strong fluctuations is close to a normal distribution, although

"tails" of this distribution, at the present time, have been poorly studied

and they also detemine the distribution of probabilities for wave intensity.

As for fluctuations of the angle of arrival of a wave at the observation

point, linked with fluctuations of 3 , 5 they are well described by the

first apprcximation of the continuous perturbation method L03.1

For a plane incident wave, boundary conditions for (30), (31) are oon.

ditions I(., P) O, /(, 1),.. 1 and the solution of these equations will be

similar to random fields in plane x a oonst,

By averaging equation (•1), we obtain the ratio

~ .1,(32)

expressing the law of conservation of energy for the examined problem.

By multiplying (31) by P4 and averaging, we obtain, by allowing for (32)

and space homogeneity, the ratio

Values in the left part (32), (33), are deterilned by the fingle-point

distribution of probabilities for field •(x,,p), and the value in the right

part of (33) is linked with the correlation of value %AI and •S.

If the single-point distribution of probabilities for is of the sues3

type, then according to (12) it will be the expression

where a .. is the dispersion of the amplitude levwl, In this case <
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If, when ailoulating the amplitude fluctuations, the supposition on the

possibility for using the expression from the first approximation of the con- s

tinoous perturbation method for Vj S is valid, the right part of (33) can

be calculated in a diffused approximation [41], and we obtain

•', In o0 o o (3, 3" 1 (351),,

In this way, the result of the combined use of suppositions on the

normality of a single-point distribution of probbili.ties for amplitude level

and the poosibility of substituting Vjs into the expression from the

first approximation of the continuous perturbation method is expression (35),

whioh, however, does not coincide with oxperimental data relative to the

behavior of d Fuller information on the ampli- ,0

tude-phase fluctuations of a plane light wave can be obtained, which is limited

by the validity of approximation of geometrical optics.

II. Approximation of the Geometrical Optics

1. Diffusion of Beams in a Medium with Random Irregularities

From the strictly formal point of view, the following in reduced to thk

Einstein-Fokker equation. Let, 1 ,.,, 1(s)) satisfy the system of dy-

namic equations

I, * t'sL s) + AQI, S),d's (36)

where vi , s) -- are the determinate funotions, and , a) -- are the

random functions (n + 1) of the variant having properties

a) f •4 s) .. a rlauss random field in (n + 1) -dimensional space (to s),

b) 0]€,•)): ,, ,
(37)

a) < )f#tf(,'. s') - 2f,(, .- s')F,,(f. ,', x).)

In this ease, the probability density for solving system (36), that is,

function P(X) =- ( < (s) -. ) V),
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(here (a() is solution of (36), corresponding to the specific realization

of f(4, a), and averaging is done on the population of all realizations of

f) satisfies the Sinstein-Fokker equationi
.+ s [ ) + AA(x, s)P, (x)) -

as O~ (38)

•Here, the notation was introduced

Ah(x,, T) - I :!

and summation is done on the recurrent indices.

These facts are well known (see, for example, [42, 43]). For practical

use, a suitable deduction for equation (38), based on the use of the Furutsu-

Novikov formula (15), ts shown in work [E•2. In the same work there is a

"method for finding oorrections to equation (38), allowing for a finiteness

of a radius of correlation of field f along the o axis, which, by the

same token, allows one to determine limits for the applicability of the equa-

tion (38) for actual physical systams.

Let us turn to equations of beams. Normally, beam length I is used

as an independent variable s. Ey accepting 1 as the independent variable,

we shall write equations for beams in a form
!d- - -- (1). d_(I) , __ - .- ,(39)

d/ dl Ork

where/ ln n, n -- is the refractive index. If one introduces 6-vectors

I - jr, -o, v -i, )01, f-1O, al, where 171 'P(,, the system of

equations (39) can be written in form (36). Conditions (37a, b) can be

accepted without reservations. However, as for the transfer to approximations

of the correlation function for f by using the 6-function, we meet insur-

mountable ditficulties. The fact is that (1 - 1,'r, -.1 'u,Q) and does not

depend on s a 1. Formally, one can reckon that the function l4 s,, s, s')
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(in this case, not depending on s, a') has according to variable a a' an

infinite interval of correlation for with as large an increase as possible in

the value of a - a', but with P •' fixed, this function does not diminish.

In this way, it is not possible to write the ESP corresponding to the dynamic

system (39)., However, one can show equations of beams, by taking the indepen-

dent variable to coordinate x. If one looks for the equation of a beam in
form RA u RA(X), where R1 y y -- is the transverve shift, instead of (39)9,

we shall have a dynamic system

dx dx (40)

where a. j . a , , , at,,. However, we notice that in this form the

equation of beams can be used only until the first point of turn, where the

denominator I I..., is reduced to iero. It follows that in a statistical

problem (40) can only be used in a range where the probability of negative r,

is small, that is, in the range of narrow angular deviations of beam. Since

in this range i'1--L! , instead of (40) we obtain an approximate system

of equations for beams in narrow-angle approximations.

dd RL* 
(41),: dx R 'L(X) =• ':.L(.r)' , " 1.' - X.l(:? , ). I

For saysem (41) a z- x is already included in the number of arguments f,

and therefore, here one can transfer to the EEF. The corresponding EEF,

according to (38) has the form

('P'. -' OP' D(42)
CoP? iJ-.

where D-- is the coefricient of diffusion, which occurs when oalculating

F kland in a model of statistically uniform and isotropic fluctuations of, /
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Here, P() -- is the three-dimensional spectral density of the correlation

function p. Expression (43) for D coincides with those shown in works f8 8

213. Equation (42) is easily solved, and its solution, corresponding to the

initial wridition I,(Rj,' i): ,(Rj) (v), has the form of a Gauss distri-

bution with moments ( RjI (x) R.I k.(X) ' D 1)k' l

( R. (x) (X) (4)' ) , IAX

These expressions are well known. On the basis of system (41) it is also

easy to obtain the longitudinal correlation function of beams displacement

Let us now exAmine the problem of simultaneous diffusion of two beams. In

this case wo have the following dynamic system of eighth order:
t/R ,• ,/•., ,,',,tA', , ( 6

S.,(46)

i = 1, 2 numbmr of beams. The oorresponding CEF for the system (46),

according to (38), has the form

0 4 / '., Y1j. .__)

axR

WP c'"J' 2 d., V (-R , A

where

. ,!-x

2l- dx .h ' '

In equation (4?) one can introduce new variables p /-R , R ...... R- M),

":-I 'U, L V. - ' -I ). After transferring to new variables, it is
2

possible to carry out integration on R and Vt and obtain an equation for
the runct ion t P A, p,I) < ,(A . .-l t .- . )"
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describing the relative diffasion of two beams,
0)~pI P, D, "'' '• ) '

e7XAIJ + p D,48)

d..V

Hlere

]i,ý(p) 2[ (L Z,,, 2v~~p~ dn, '1~,( ~ 1v. L- u (49~)

If 10 -- is the radius of correlation of gradients of the refractive

index, when p/ Io D,,(j) 2/)-X.. This ratio shows that then there are large

initial distances between beams, in comparison with 10, their relative

diffusion occurs with a two,.fold diffusion coefficient, which corresponds

to the independent diffusion of each beam. The joint distribution of pro-

babilities in this case can be reckoned as Gauss.

In a general case it was not possible to solve equation (48). It is

only obvious that when there is a variable diffusion coefficient (49) the

solution is not a Gauss distribution. This can indicate (24] that the mean

square of the distance between beams increass3 proportionally to the cube of

the distance traveled, but the coefficient in this formula is different in

small and reciprocal :istances. These two ranges are separated from each

other by a small range of exponential increase, the beginning of which coin-

cides with the beginning of the range of strong fluctuations of wave intensity.

Let us exam'.e the limits for the applicability of a diffused apprxima-

tion for beams shown above. As was already &aid, the EEF for diffusLon o.'

beams could only be substantiated in narrow-angle approximation. Henr.e, according

to (44) the condition arises

or . (• , (50)

where 2 Is the disp•erslon of fluctuations of the refractive index. This

condition imposes a sm~ill limitation on the transverse displacern:ent of the
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beam: Rkx) >.• x'. An examination of corrections linked with the finiteness of

the longitudinal radius of aorrelation, does not lead to new limitations,

Let us state that in another extreme case (when the beam goes far off

into a heterogeneous medium) there is an isotropic diitribution of protabilities

for the bean in epace similar to the Boltzmarn distribution in stat13tical

physics

2. Amplituder.phase fluctuatiovns of a light wave in random heterogeneous

media

Let us now examine the amplitude-phase fluctuations of a plane light
¶' ve.

In an approximation of the geometrical optics, the sy stem of equations

for the amplitude level and wave phase takes on the form
" ! ^- S(x, p) (,O p) .... ,%

-[" , •+ • -. ,.(51)

The system of equations (51) was investigated in works [4.5- 47, 25].

Solution of an equation for • can be written in the form [j I.

*(x, e):-- o-•, d A: S(ý. I?(x, •' pt, (52)
2 ,,2

where R(.') R (x, x': are the transverse displacements of beams, determining

the beam tube, which satisfy the equationAl

R(x, x'; p) p - I d ' SOy, R(A, ; )). (5?))

Here, on the strength of the supposed singularity of beams, £

R(ýý, "; R(x,% .)•-:I(• ;•, (54)

Thm paths of beams arriving at the ob!ervation Point (x, p) are determined

by the value VL 3 the equation for which, in its turn, has the form

IRatios (52) (54) arc also valid when there are diffraction effects.
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-i-I.I-I-.. .. .- il- -.. ..... . . .

, S + W, S-V )T . -V, P). (55)

The solution of equation (55) can also be written in the form of an integral

with respect to the "ame boamt :
Vk -A,')R

0 (56)
By substituting (56) into (53), one can discard the wave phase from examina-

tion, and we shall arrive at an equation for the path 1251

-dx'" I (X1, R(x')) (57)

with limiting oonditions

S... .. (x) p• , 0,.o,d-,x' 1,,o (58)

Here, the expression (52) for the amplitude level assumes the form

"(59)
,:" O~ •2I5., ,. : .

in this way, both the amplitude level and the phase gradient, determining

the angle of arrival of the wave at the observation point for a specific

realization of field E',e,), is determined by the single "dynamic" equation

(57) with limiting conditions (58). Beams, determined by equation (57), vary

from beams in Section I since the limiting conditions for them are set in

different space points (when xt = 0 and xf = x). Hence, the propagation

of beamna described by equation (57) with conditions (5!3),* does not have -.1e

nature of a diffused random process (even during the condition of 6-correlation

of field ((x. ) along the x axis), and the probability density for these

beanu is the arbitrary piobability density ror a whole aggregate of beams in-

vestigated in Section 1 of this chapter,

Beams, determined by equation (57) with conditions (58), describe fluc-

tuations of the beam tube, which dete-mine fluctuations of wave intensi.ty at

the observation point. In work C418 there is a calculation of fluutuations of

29
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the sectional area of a beam tube when one can uso a successive approximation

method for equation (57).

Let us note that, as wae -shown in work L~471, both the solution itself

of the aquat.on for 'J, and all the statistical oharacteristics of it are

determined by 3olving the equation for the wave phase S(x, p SCSI.

SThe applicability of diffused approximation fox- denoribing ampli-..

tude-phase wave fluctuations

An equation for the-amplitude level..can be written In the form
V./ / Vi S~~,) o 140, P).- 1), (60)

Oxk
"where I• x, ,t (.r, tp)i m. is the wave intensity. On the

Strength of the space homogeneity of field f(r). random fields u(x, p). (x,p),

S .... wil• be homogeneous, .fields in plans x a eorAst. By using equations

(1,(60) one can obtain an expression for the si.ng.le-point intensity corre-

lation and wave phaseu s (I. A('l> +1 <(i(,S 61
dx.

on the other hand, the rutin takes place'
•i:: 1,00 -, Pi 11(7 , ..< '( x)2 -r S)l (62)

where G., pl, p,) -..- . ,) , " is the mutual coherency fuunction

.xamined in the Uirst chapter. In an approximation of geomntrical optics,

tha expression (62) •,3simplified and takes on the forn
VGX, pis P2)1,0 P- (I(V S)>,. (63)

The left portion (63) can be calculated in an approximation of the diffu.'ed

random prooess, In this appro\Luatlon, (unction 0 for the plane wave Is

deacribed by formula (27 a), and (., P)I(..V, p)> -= O. * Con.3equerntly, in

an approximation of' geometrical option5 and dif fuzed approximation1

. Let us state that formulae (64) aru alo valid in the case of' non-Gauss

j fluctuations of I.
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< D(V S)11 -•O•.1(O)x ( 6,
< IS() k ••

where ,r d %*A,()x-.<(v $oY)'. > - is the dispersion of tho angle of

arrival of a wave at the observation point in the first approximation of a

continuous perturbation, meothod (the parameter, characterizing the intensity

of phase fluctuations d6],, .(x p)- -

The correlation (IS>,= (,a- in woJn/12 is determined by the single-

point distribution of probabilities of field u(x, P) and generally speaking,

is conditioned by all moments of u(x, p). The expression (6) for this

oorrelotibn was calculated in a diffused approximation.

By followino Section 4 of the first chapter, one can obtain conditions

for the applicability for tVormalae (64), which, to some degree, will charac-

terize the condition ct applicability of the diffused approximation for a

single-point distribution of probabilities in an approximation of geometrical

optics. These conditions for a turbulent medium will have the form [2A,

,f>> , <I, (65)

where the value of W c.haracterizes the internal scale of turbulence.

In this.way, when carrying out conditions (65) calculations for the am-

plitudo-p•ase fluctuations in an approximation of the diffused random process

In a g6eometrical-optics approximation are valid. Conditions (65) coincide with

conditions (50), describing the applicability of a diffuised approximation for

bqams in a turbulent medium, which, as was shown in th6 previous section, also

determine all the atatistical characteristics of a iight wave.

Let us try to analyze the results obtained from the point of view o! their

applicability for the propagation of light in a turbulent atmosphere,
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A parabolic equation (quasi-optical approximation) was suggested as a

basis for examination. This equation is only valid when one can disregard

back scattering. PFr light, scattered in turbulent fluctuations of the

refraction index, angles , - 14, in which the basic part of the scattering

fjfield is included, have an order of 10- - 10"- Since fluctuati.ons of the

dielectric constant in the atmosphere are also very small (89--1O-0) one

can almost always disregard back scattering of light in turbulent hetero.

geneities. This condition is only expected to be violated in the millimeter

wave band, and even in this case deviations are very small.

On the other hand, the small value of the scattering angle 1 causes a

strong interaction of scattered waves among themselves and with the incident

wave. This effect, in spite of the small valub of & also causes strong

field fluctuations, As a result, as was said above, calculation methods,

based on one or another form of the perturbation method, are invalid. The

suggested theory uses the small value of another parameter -- the characteristic

longitudinal scale of hetez'ogeneities compared with all other longitudinal

scales of the problem. Here, there is an analogy with the nonequilibrium

kinetic theory of gases, where the small value of the interaction time of

molecules (in our case, the longitudinal coordinate plays a time role) is used

for separation. As a result, in spite of the fact that conditions for the

applicability of the theory occur and contain limitations on the size of

Fluctuations of 6g, these limitations are so small that they are carried out

in an actual atmosphere even for relatively long routes. Unfortunately, due

to the expansion of the applicability range, one must contend with a relatively

complicated theory and the complication of its results, that is, one mtust

have recourse to numerical methods of calculation (for example, for function

34). Apart from this, since the proposed theory operates with coherency
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functions of different orders, complications occur when phase fluctuations

must be calculated, However, the basic difficulty with which one must corn-

tend in the continuous perturbation method -- of not being able to describe

a light field in the strong fluctuation range -- is eliminated in the new

theory. Apparently, in all cases when the Btatistical characteristics of a

light field in a turbulent atmosphere whioh interested us could be expressed

by coherency functions, the suggested theory almost aliaya gave us an accept..

able resdlt.,
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